
Parallelization of Tree-Particle
Mesh Algorithm for N-Body
Galaxy Simulations

15418 Course Project
Spring 2024
Kaiwen Geng and Alex Nguyen
Project Website

https://kevin-03350402.github.io/418_project/

Contents
1. Summary ……………………………………………………………………………..…p2

2. Background …………………………………………………………………………..…p2

3. Initial Naive Model ……………………………………………………………………..p4

4. Combining Algorithms ……………………………………………………………….....p9
4.1. Approach..…………………………………………………………………….....p9
4.2. Result..………………………………………………………………………..….p9

1

1. Summary
In this project, our goal was to create an N-body galaxy simulation by implementing a
Tree-Particle Mesh algorithm which combined a Barnes-Hut Tree algorithm with a Particle Mesh
algorithm to utilize the advantages of each algorithm in force calculations between particles in
space. We intended to utilize the Barnes-Hut algorithm to perform force calculations for particles
in close proximity (in high density regions) and Particle Mesh algorithm to perform force
calculations on a particle.

2. Background
2.1 The Barnes-Hut (Tree) Algorithm

The first of the algorithms that we utilize is the Barnes Hut algorithm. The defining feature of a
Barnes-Hut algorithm is its use of a quadtree to sort the particles of the simulation by spatial
proximity, with each node containing either particles or additional leaf nodes containing
particles.

Once the quadtree has been constructed and all particles have been placed within the data
structure, the forces on each particle are calculated by traversing the quadtree. The force

2

calculations are performed using several mathematical equations based on Newton’s Law of
Universal Gravitation, which we will not talk about here because they are not relevant to the
advantages of this algorithm.

For nodes that are sufficiently far away from the particle in question, the group of particles in a
distant node is treated as a single entity with their combined mass located at their center of mass.
This approximation greatly reduces the number of interactions that need to be computed. It is this
approximation that we aim to solve with the Particle Mesh algorithm rather than the Barnes Hut
tree to increase the accuracy of our simulation with regards to the forces of far away particles
acting on a particle in question.

2.2 The Particle Mesh Algorithm

The Particle Mesh algorithm is a computational method primarily used in physics simulations to
solve partial differential equations that appears in various fields like fluid dynamics,
electromagnetism, and astrophysics. At its core, the Particle Mesh algorithm combines two main
techniques: particle methods and mesh-based methods. Particle methods represent the system by
discrete particles, while mesh-based methods discretize space into a grid. The Particle Mesh
algorithm integrates these by employing particles to carry information about the system's
behavior and a mesh to efficiently calculate interactions between particles.

The algorithm follows several main steps:

1. Particle Representation: The system is represented by a collection of particles, each
possessing properties like position, velocity, and other relevant attributes depending on
the problem domain.

2. Mesh Construction: A mesh, typically a grid, is superimposed over the domain where
particle interactions occur. This mesh provides a structured framework for efficiently
calculating interactions between particles.

3. Particle-Mesh Interaction: The particles' attributes, such as charge or density, are
deposited onto the mesh using interpolation techniques. This step spreads the influence of
each particle across nearby mesh points, allowing for smooth interactions.

4. Mesh Calculations: Once the particles' attributes are mapped onto the mesh, traditional
numerical techniques like finite difference or finite element methods are applied to solve
the PDEs governing the system's dynamics. These calculations account for interactions
between particles as well as their surroundings.

5. Updating Particle Properties: After solving for the mesh-based equations, the updated
values are transferred back to the particles using interpolation. This step ensures that the
particles reflect the changes in the system accurately.

6. Iteration: The process iterates over time steps, advancing the simulation by recalculating
particle interactions and mesh-based computations.

3

2.3 The Tree-Particle Mesh Algorithm

The Tree-Particle Mesh (TPM) algorithm is a computational technique used primarily in
astrophysics and cosmology to simulate the gravitational interactions among a large number of
particles in a cosmological context, such as in the formation of galaxies and large-scale structures
in the universe. At its core, TPM combines two main methods: the Particle-Mesh (PM) method
and the Tree method. The PM method represents the distribution of particles by interpolating
their mass onto a regular grid, simplifying calculations by converting the continuous mass
distribution into a discrete one. TPM combines these methods to overcome their individual
limitations. It divides space into a grid for the PM calculation but also constructs a hierarchical
tree for efficient computation of gravitational forces. The grid is used to compute forces for
particles that are relatively far away from each other, while the tree is used to calculate forces for
particles that are close.

The algorithm proceeds in several steps:

1. Construct a hierarchical tree based on the distribution of particles.
2. Interpolate particle masses onto a grid.
3. Compute gravitational forces using the PM method for distant particles.
4. Compute forces for nearby particles using the hierarchical tree.
5. Combine the forces obtained from both methods to determine the overall gravitational

interactions.

TPM offers several advantages. It efficiently handles large particle numbers, allowing
simulations of complex cosmological scenarios. Additionally, it balances accuracy and
computational cost by employing different methods depending on the particle distribution.
However, TPM also has limitations. It requires careful tuning of parameters to achieve optimal
performance, and the accuracy of the results may vary depending on the specific implementation.

3. A Naive Model
3.1 A Naive Model Based on Coulomb's law without TPM

In this naive N-body simulation, each particle inhabiting the three-dimensional space possesses
several defining attributes, including mass, charge, position, and initial velocity. These particles
dynamically interact with one another through the fundamental forces of nature, which is
primarily governed by Coulomb's law for electrostatic interactions and Newton's law of universal
gravitation for gravitational effects, though with a relatively minor influence compared to
electrostatic forces. The computation of these interactions involves meticulous calculations of the

4

forces exerted between each pair of particles, accounting for their respective charges and
distances. Coulomb's law describes the force of attraction or repulsion between charged particles,
where particles with opposite charges attract each other, while particles with like charges repel.
The strength of these interactions varies proportionally with the magnitude of the charges and
inversely with the square of the distance between them. Furthermore, gravitational interactions,
although relatively weaker compared to electrostatic forces in this simulation, contribute to the
overall dynamics of the system. Newton's law of universal gravitation governs the gravitational
attraction between particles, where each particle exerts an attractive force on every other
particle,and is dependent on their masses and the distance separating them. Upon computing the
forces acting on each particle, Newton's second law of motion comes into play. The net force
experienced by a particle is related to its resulting acceleration. By integrating these accelerations
over time, the simulation calculates the updated velocities and positions of the particles, thereby
simulating their trajectories and interactions throughout the simulated timeframe.

To aid visualization and comprehension of the system's behavior, the particles are color-coded
based on their charges, with negatively charged particles depicted in shades of blue and
positively charged particles in shades of red. The intensity of these colors corresponds to the
magnitude of the respective charges, allowing observers to discern the distribution of charges
within the system visually. Moreover, the size of each particle's representation in the
visualization is proportional to its mass, providing additional insights into the relative masses of
the particles and their impact on the dynamics of the system.

For experimentation and analysis, a specific scenario has been set up, wherein 30 particles with
randomly generated attributes—positions and charges—are introduced into the
three-dimensional space. The positions of these particles are recorded at discrete time intervals
(0, 75, 150, and 225, corresponding to increments of 0.0025 seconds), enabling the observation
and study of their evolving trajectories and interactions over time.

(a) (b)

5

(c) (d)

3.2. Parallelization Strategy for Naive Model
3(a)

6

3(b)

The plot above is the execution time of our program and is measured based on wall-clock time in
seconds. We experiment with generating 10 to 40 random particles (full simulations, plot 3a) and
force calculation only with 100, 250, 500, and 100 particles (plot 3b)

Parallelization in this simulation is achieved using OpenMP directives, which enable the
concurrent execution of certain tasks across multiple threads. The key components of the
simulation where parallelism is used include:

1. Force Calculation: The computation of forces between particle pairs is parallelized. This
allows for simultaneous calculation of forces between multiple pairs of particles, so we
can leverage the multi-core architecture of modern processors to improve computational
efficiency.

2. Integration: The integration step, which updates the velocities and positions of particles
based on the computed forces, is also parallelized. By distributing the integration
calculations across multiple threads, the simulation can effectively handle a large number
of particles and time steps.

3. Particle Generation: The process of generating random particles is parallelized to
expedite the initialization of the simulation. Multiple particles can be generated
concurrently, reducing the overall setup time for the simulation.

7

3.3 Analysis of Non-Linear Speedup for Naive Model:

1. Output File Writing Overhead:
One significant reason for non-linear speedup is the overhead associated with writing

simulation results to output files. In the parallel simulation, each thread may attempt to write to
the output file simultaneously at the end of every iteration. This concurrent access to the file
system can lead to contention and overhead, especially when multiple threads contend for the
same resource. As the number of threads increases, the contention for file access escalates, which
can potentially cause delays and inefficiencies. This contention can result in a bottleneck,
limiting the overall speedup achieved by parallelization.

2. Synchronization Overhead:
Another potential reason for non-linear speedup is the overhead incurred due to

synchronization mechanisms employed by OpenMP directives. In the parallel sections of the
code, synchronization primitives such as barriers and locks may be utilized to coordinate the
execution of threads and ensure data consistency. The use of these synchronization mechanisms
introduces additional overhead, as threads may need to wait for each other to complete certain
operations or access shared resources. This overhead can become more obvious as the number of
threads increases, leading to diminishing returns in terms of speedup.

3. Load Imbalance:
Load imbalance among threads can also contribute to non-linear speedup. In the N-body

simulation, certain computational tasks, such as force calculation and integration, may not be
evenly distributed among threads due to variations in particle densities or interaction patterns.
Threads may finish their assigned workloads at different times, leading to idle time for some
threads while others continue to compute. This idle time reduces the overall efficiency of parallel
execution and diminishes the speedup achieved.

4. Memory Bandwidth Limitations:
Memory bandwidth limitations can also impact the speedup of the parallel simulation. As

the number of threads increases, the demand for memory bandwidth escalates due to concurrent
access by multiple threads. This increased demand can saturate the available memory bandwidth,
leading to contention and delays in memory access. Consequently, the overall performance
improvement may not scale linearly with the number of threads, as memory access becomes a
limiting factor.

8

4. Combining Algorithms
4.1 Approach

We began with Barnes-Hut starter code based on an implementation by beltoforion. As stated
before, we intended to utilize the Particle Mesh algorithm for calculating the gravitational
potential over large scales where interactions can be effectively averaged over large distances,
and the Barnes-Hut algorithm for more accurate, direct calculations of interactions between
particles that are in relatively close proximity, where the detailed structure and dynamics are
more important.

4.1.1 Parallelization Strategy for TPM

We had several goals for parallelization of the Tree Particle Mesh algorithm, namely:

Particle Decomposition: This approach would simplify data management but could lead
to uneven computational loads if particle distribution becomes non-uniform. Additionally we
aimed to utilize dynamic load redistribution during the reconstruction of the tree and particle
mesh after significant particle movement changes affect the particle distribution.

Sharing Particle Data: We aimed to use openmpi to send and receive particle data
between processors handling the force calculations of particles between boundaries. This would
reduce communication overhead and allow for efficient calculations of force between particles
far away from one another.

Parallel FFT: Another goal was to employ parallel FFT algorithms for calculations of the
gravitational potential across the grid of particles. We expected to see an increase in speedup for
long range Particle Mesh calculations as a result of this since the work required to perform these
calculations would be evenly distributed between processors. However, we had trouble
implementing this due to issues with the Particle Mesh.

4.2 Result

4.2.1 Analysis

The Barnes-Hut algorithm has been successfully implemented and is fully functional. It
effectively reduces the complexity of direct N-body calculations from O(n^2) to O(nlogn) by
approximating distant particles as a single mass, thus speeding up the computation of short-range
forces significantly. The TPM method, designed to efficiently estimate long-range interactions
through a combination of a hierarchical tree structure and particle mesh, is currently
underperforming. The main challenge lies in handling the highly sophisticated mathematics and
partial differential equations integral to this method. These complexities have impeded our
ability to accurately compute the potential fields over large volumes, crucial for long-distance

9

interaction estimation. Compared with the Naive parallel version, we observe significant
reduction in the force calculation part while maintaining high accuracy levels as suggested by
plot 4a. This efficiency is crucial for realistic and timely simulations.

4(a)

The parallelization of the Barnes-Hut algorithm does not achieve perfectly linear speedup due to
several inherent factors related to the algorithm's structure and the nature of parallel computing.
Here are the primary reasons:

1. Tree Construction Overhead:

The Barnes-Hut algorithm begins by constructing a spatial decomposition tree (quadtree
in 2D, octree in 3D) where each node represents a region of space containing particles. This tree
construction is a sequential process and can become a bottleneck in parallel implementations.
While certain parts of the tree construction can be parallelized, the inherently hierarchical nature
of tree building imposes limits on parallel efficiency.

2. Load Balancing Issues:

In the Barnes-Hut algorithm, the distribution of particles across different regions of space
can be highly uneven. This leads to unbalanced workloads among different processing units
(threads or cores) in a parallel system. Some processors might end up with dense clusters of

10

particles, requiring more computations, while others might have sparsely populated regions,
resulting in idle time. Achieving optimal load balancing dynamically is challenging and impacts
the linear scalability of the algorithm.

3. Communication Overhead:

Processors need to exchange information about the regions of space they are handling,
particularly the mass and center of mass of the regions, to calculate forces accurately. This
communication between processors can become significant, especially as the number of
processors increases. The overhead from this inter-processor communication often reduces the
benefits gained from parallel processing, preventing linear speedup.

4. Dependency and Synchronization:

The force calculation step in the Barnes-Hut algorithm involves walking the tree to
compute gravitational forces on each particle based on the tree nodes that meet a certain criterion
(usually based on a distance or "opening angle" threshold). This process has inherent
dependencies because the force calculation on one particle might depend on the results of
another, particularly when considering shared or bordering regions in parallel setups. These
dependencies necessitate synchronization points, which can slow down execution and further
deviate from linear speedup.

5. Algorithmic Complexity:

The complexity of the Barnes-Hut algorithm is O(nlogn) rather O(n^2) is the number of
particles. The logarithmic term arises from the depth of the tree (as deeper trees mean more
levels to traverse). In parallel environments, this complexity means that even with perfect
parallelization, the speedup will inherently not be linear due to the increasing cost of deeper tree
traversals with larger numbers of particles.

4.2.2 Reflection

Our algorithm features a dynamic threshold mechanism that intelligently decides the boundary
between employing the Barnes-Hut approximation and the TPM method. This adaptive
thresholding is based on a criterion that optimizes for both computational efficiency and
accuracy, adjusting to the specific distribution and density of particles within the simulation. By
combining TPM for global interactions and Barnes-Hut for local interactions, the algorithm can
scale effectively to simulations involving a large number of particles, which makes it suitable for
astrophysical simulations and other complex systems.The adaptive use of different methods
based on the spatial distribution of particles ensures optimal computation speed without a
significant compromise in accuracy. Moreover, adjustable thresholds allow the algorithm to be

11

finely tuned for specific simulation needs, accommodating a wide range of scenarios with
varying particle densities and distribution characteristics.

4.2.3 Future Research and discussion

Continued research and development are directed towards overcoming the mathematical and
computational challenges in the TPM method. Enhancing its accuracy and efficiency will
provide a more balanced approach between short and long-range force calculations. Additionally,
we will keep exploring additional optimization techniques for parallel processing and algorithm
refinement to better handle diverse simulation scenarios and particle distributions.

The developed N-body simulation algorithm, integrating the Barnes-Hut and TPM methods
enhanced by parallel computation, represents a significant step forward in the simulation of
gravitational systems. While the Barnes-Hut component is effectively operational, the TPM
requires further development to meet its full potential. This algorithm’s advancements in
computational efficiency and the ongoing efforts to overcome its current challenges are pivotal
for the future of large-scale gravitational simulations.

12

5. Sources
Tomoaki Ishiyama, Toshiyuki Fukushige, Junichiro Makino, GreeM: Massively Parallel TreePM

Code for Large Cosmological N-body Simulations, Publications of the Astronomical Society of

Japan, Volume 61, Issue 6, 25 December 2009, Pages 1319–1330,

https://doi.org/10.1093/pasj/61.6.1319

Bagla, Jasjeet. (2002). TreePM: A code for Cosmological N-Body Simulations. Journal of

Astrophysics and Astronomy. 23. 185-196. 10.1007/BF02702282.

Contribution:

Kaiwen 50%

Alex 50%

13

https://doi.org/10.1093/pasj/61.6.1319

